Abstract
Decreased photoluminescence of the phosphor BaMgAL10O17:Eu due to oxidation of the europium dopant at high temperatures has been a subject of study for many years in relation to its use in lighting applications. However, understanding of the underlying effects that cause this reduction in photoluminescence remains incomplete and some of the mechanisms proposed in the literature are contradictory. Recent use of this phosphor as a thermal history sensor has extended the range of exposure conditions normally investigated in lighting applications to higher temperatures and multiple exposure times. The kinetics of the process were investigated by means of spectroscopy and material characterisation techniques. It was found that changes in the luminescence are the result of two simultaneous processes: the oxidation of Eu2+ ions (through a process of diffusion) and a phase transition. The level of degradation of the phosphor is suggested to follow the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model above 900°C and thus can be predicted with knowledge of the exposure time and temperature. This is useful in applications of the phosphor as a temperature sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.