Abstract

RBFN (Radial-Basis Function Networks) represent an attractive alternative to other neural network models. Their learning is usually split into an unsupervised part, where center and widths of the basis functions are set, and a linear supervised part for weight computation. Although available literature on RBFN learning widely covers how basis function centers and weights must be set, little effort has been devoted to the learning of basis function widths. This paper addresses this topic: it shows the importance of a proper choice of basis function widths, and how inadequate values can dramatically influence the approximation performances of the RBFN. It also suggests a one-dimensional searching procedure as a compromise between an exhaustive search on all basis function widths, and a non-optimal a priori choice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.