Abstract
This paper is mainly concerned with the classical KKT reformulation and the primal KKT reformulation (also known as an optimization problem with generalized equation constraint (OPEC)) of the optimistic bilevel optimization problem. A generalization of the MFCQ to an optimization problem with operator constraint is applied to each of these reformulations, hence leading to new constraint qualifications (CQs) for the bilevel optimization problem. M - and S -type stationarity conditions tailored for the problem are derived as well. Considering the close link between the aforementioned reformulations, similarities and relationships between the corresponding CQs and optimality conditions are highlighted. In this paper, a concept of partial calmness known for the optimal value reformulation is also introduced for the primal KKT reformulation and used to recover the M -stationarity conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nonlinear Analysis: Theory, Methods & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.