Abstract
We rigorously justify the quasistationary approximations of two moving boundary problems. We work out a systematic procedure to derive a priori estimates that allow to pass to the singular limit. The problems under our consideration are a one-phase osmosis model and the one-phase Stefan problem with Gibbs–Thomson correction and kinetic undercooling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Interfaces and Free Boundaries, Mathematical Analysis, Computation and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.