Abstract
During the 10th Seminar on Analysis of Algorithms, MSRI, Berkeley, June 2004, Knuth posed the problem of analyzing the left and the right path length in a random binary tree. In particular, Knuth asked about properties of the generating function of the joint distribution of the left and the right path lengths. In this paper, we mostly focus on the asymptotic properties of the distribution of the difference between the left and the right path lengths. Among other things, we show that the Laplace transform of the appropriately normalized moment generating function of the path difference satisfies the first Painlevé transcendent. This is a nonlinear differential equation that has appeared in many modern applications, from nonlinear waves to random matrices. Surprisingly, we find out that the difference between path lengths is of the order n5/4 where n is the number of nodes in the binary tree. This was also recently observed by Marckert and Janson. We present precise asymptotics of the distribution's tails and moments. We will also discuss the joint distribution of the left and right path lengths. Throughout, we use methods of analytic algorithmics such as generating functions and complex asymptotics, as well as methods of applied mathematics such as the Wentzel, Kramers, Brillouin (WKB) method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.