Abstract

In this paper, a spatial multiplexing multiple-input multiple-output (MIMO) system when hardware along with radio-frequency imperfections occur during the communication setup is analytically investigated. More specifically, the scenario of hardware impairments at the transceiver and imperfect channel state information (CSI) at the receiver is considered when successive interference cancelation (SIC) is implemented. Two popular linear detection schemes are analyzed, namely, zero-forcing SIC (ZF-SIC) and minimum mean-square-error SIC (MMSE-SIC). New analytical expressions for the outage probability of each SIC stage are provided when independent and identically distributed Rayleigh fading channels are considered. In addition, the well-known error propagation effect between consecutive SIC stages is analyzed, while closed-form expressions are derived for some special cases of interest. Finally, useful engineering insights are manifested, such as the achievable diversity order, the performance difference between ZF- and MMSE-SIC, and the impact of imperfect CSI and/or the presence of hardware impairments to the overall system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.