Abstract

The need for widespread structural safety checks represents a stimulus for the research of advanced techniques for structural monitoring at the scale of single constructions or wide areas. In this work, a strategy to preliminarily identify and rank possible critical constructions in a built environment is presented, based on the joint exploitation of satellite radar remote sensing measurements and artificial intelligence (AI) techniques. The satellite measurements are represented by the displacement time series obtained through the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique known as full resolution Small BAseline Subset (SBAS) approach, while the exploited AI technique is represented by the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) methodology. The DBSCAN technique is applied to the SBAS-DInSAR products relevant to the achieved Persistent Scatterers (PSs), to identify clusters of pixels corresponding to buildings within the investigated area. The analysis of the deformation evolution of each building cluster is performed in terms of velocity rates and statistics on the DInSAR measurements. Synthetic deformation maps of the areas are then retrieved to identify critical buildings. The proposed methodology is applied to three areas within the city of Rome (Italy), imaged by the COSMO-SkyMed SAR satellite constellation from ascending and descending orbits (in the time interval 2011–2019). Starting from the DInSAR measurements, the DBSCAN algorithm provides the automatic clustering of buildings within the three selected areas. Exploiting the derived deformation maps of each study area, a preliminary identification and ranking of critical buildings is achieved, thus confirming the validity of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call