Abstract
In this note we deal with a question raised by R. S. Pierce in 1963: Determine the elements of the Jacobson radical of the endomorphism ring of a primary abelian group by their action on the group. We concentrate on separable abelian p p -groups and give a counterexample to a conjecture of A. D. Sands. We also show that the radical can be pinned down if the endomorphism ring is a split-extension of its ideal of all small maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.