Abstract

In this paper we propose an extension of the iteratively regularized Gauss---Newton method to the Banach space setting by defining the iterates via convex optimization problems. We consider some a posteriori stopping rules to terminate the iteration and present the detailed convergence analysis. The remarkable point is that in each convex optimization problem we allow non-smooth penalty terms including $$L^1$$ and total variation like penalty functionals. This enables us to reconstruct special features of solutions such as sparsity and discontinuities in practical applications. Some numerical experiments on parameter identification in partial differential equations are reported to test the performance of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.