Abstract
Let FGFG be the group algebra of a finite pp-group GG over a field FF of characteristic pp. Let *\cd be an involution of the group algebra FGFG which arises form the group basis GG. The upper bound for the number of non-isomorphic *\cd-unitary subgroups is the number of conjugacy classes of the automorphism group GG with all the elements of order two. The upper bound is not always reached in the case when GG is an abelian group, but for non-abelian case the question is open. In this paper we present a non-abelian pp-group GG whose group algebra FGFG has sharply less number of non-isomorphic *\cd-unitary subgroups than the given upper bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Algebra Combinatorics Discrete Structures and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.