Abstract

In this paper we investigate the issue of the inviscid limit for the compressible Navier–Stokes system in an impermeable fixed bounded domain. We consider two kinds of boundary conditions. The first one is the no-slip condition. In this case we extend the famous conditional result (Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary. In: Seminar on nonlinear partial differential equations, vol. 2, pp. 85–98. Math. Sci. Res. Inst. Publ., Berkeley 1984) obtained by Kato in the homogeneous incompressible case. Kato proved that if the energy dissipation rate of the viscous flow in a boundary layer of width proportional to the viscosity vanishes then the solutions of the incompressible Navier–Stokes equations converge to some solutions of the incompressible Euler equations in the energy space. We provide here a natural extension of this result to the compressible case. The other case is the Navier condition which encodes that the fluid slips with some friction on the boundary. In this case we show that the convergence to the Euler equations holds true in the energy space, as least when the friction is not too large. In both cases we use in a crucial way some relative energy estimates proved recently by Feireisl et al. in J. Math. Fluid Mech. 14:717–730 (2012).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.