Abstract

Hydrographic echosounder has been the standard instrument that provides a measure of water depths. In a muddy environment, this detection is not as straightforward as it seems; low gradient of acoustic impedance presence within the water-sediment interface resulting in vertical separation of liquid-solid boundary detected by different frequencies of depth sounding system. In this study, we investigate the depths measured by a dual-frequency hydrographic echosounder in a muddy environment, coupled with a simultaneous probing of the water-seabed interface by means of a free-falling cone penetrometer. We intend to understand the extent of the uncertainty of a depth-sounding system to precisely locate the liquid-solid boundary within the water-seabed interface, specifically at Patimban coasts, situated in the north coast part of Java Island, where muddy sediments dominate the seabed. From our investigation, we found that standard high-frequency sounding (200 kHz) underestimates the physical depth by 0.26 ± 0.17 m, while standard low-frequency sounding (24 kHz) overestimates the physical depth by 0.23 ± 0.19 m and tends to give inconsistent measures. Our study suggests the importance of considering these measures of discrepancy when depth sounding is being carried out in a muddy environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.