Abstract

Solving inverse scattering problem for a discrete Sturm-Liouville operator with the fast decreasing potential one gets reflection coefficients $s_\pm$ and invertible operators $I+H_{s_\pm}$, where $ H_{s_\pm}$ is the Hankel operator related to the symbol $s_\pm$. The Marchenko-Fadeev theorem (in the continuous case) and the Guseinov theorem (in the discrete case), guarantees the uniqueness of solution of the inverse scattering problem. In this article we asks the following natural question --- can one find a precise condition guaranteeing that the inverse scattering problem is uniquely solvable and that operators $I+H_{s_\pm}$ are invertible? Can one claim that uniqueness implies invertibility or vise versa? Moreover we are interested here not only in the case of decreasing potential but also in the case of asymptotically almost periodic potentials. So we merege here two mostly developed cases of inverse problem for Sturm-Liouville operators: the inverse problem with (almost) periodic potential and the inverse problem with the fast decreasing potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.