Abstract

Bidimensional processes defined by dx(t) = ρ (x, y)dt and dy(t) = m(x, y)dt + [2v(x, y)]1/2dW(t), where W(t) is a Wiener process, are considered. Let T(x, y) be the first time the process (x(t), y(t)), starting from (x, y), hits the boundary of a given region in . A theorem is proved that gives necessary and sufficient conditions for a given complex function to be considered as the moment generating function of T(x, y) for some bidimensional diffusion process. Examples are given where the theorem is used to construct explicit solutions to first hitting time problems and to compute the infinitesimal moments that correspond to the chosen moment generating function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.