Abstract

A real symmetric matrix G with zero diagonal encodes the adjacencies of the vertices of a graph G with weighted edges and no loops. A graph associated with a n × n non–singular matrix with zero entries on the diagonal such that all its (n − 1) × (n − 1) principal submatrices are singular is said to be a NSSD. We show that the class of NSSDs is closed under taking the inverse of G. We present results on the nullities of one– and two–vertex deleted subgraphs of a NSSD. It is shown that a necessary and sufficient condition for two–vertex deleted subgraphs of G and of the graph ⌈(G −1 ) associated with G −1 to remain NSSDs is that the submatrices belonging to them, derived from G and G −1 , are inverses. Moreover, an algorithm yielding what we term plain NSSDs is presented. This algorithm can be used to determine if a graph G with a terminal vertex is not a NSSD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.