Abstract

We consider a gauge-invariant Hamiltonian analysis for Yang–Mills theories in three spatial dimensions. The gauge potentials are parametrized in terms of a matrix variable which facilitates the elimination of the gauge degrees of freedom. We develop an approximate calculation of the volume element on the gauge-invariant configuration space. We also make a rough estimate of the ratio of 0 ++ glueball mass and the square root of string tension by comparison with (2+1)-dimensional Yang–Mills theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.