In the era of Industry 4.0, the use of Artificial Intelligence (AI) is widespread in occupational settings. Since dealing with human safety, explainability and trustworthiness of AI are even more important than achieving high accuracy. eXplainable AI (XAI) is investigated in this paper to detect physical fatigue during manual material handling task simulation. Besides comparing global rule-based XAI models (LLM and DT) to black-box models (NN, SVM, XGBoost) in terms of performance, we also compare global models with local ones (LIME over XGBoost). Surprisingly, global and local approaches achieve similar conclusions, in terms of feature importance. Moreover, an expansion from local rules to global rules is designed for Anchors, by posing an appropriate optimization method (Anchors coverage is enlarged from an original low value, 11%, up to 43%). As far as trustworthiness is concerned, rule sensitivity analysis drives the identification of optimized regions in the feature space, where physical fatigue is predicted with zero statistical error. The discovery of such “non-fatigue regions” helps certifying the organizational and clinical decision making.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call