Abstract
This paper derives simple, yet fundamental formulas to describe the interplay between parallelism of an application, program performance, and energy consumption. Given the ratio of serial and parallel portions in an application and the number of processors, we derive optimal frequencies allocated to the serial and parallel regions in an application to either minimize the total energy consumption or minimize the energy-delay product. The impact of static power is revealed by considering the ratio between static and dynamic power and quantifying the advantages of adding to the architecture capability to turn off individual processors and save static energy. We further determine the conditions under which one can obtain both energy and speed improvement, as well as the amount of improvement. While the formulas we obtain use simplifying assumptions, they provide valuable theoretical insights into energy-aware processor resource management. Our results form a basis for several interesting research directions in the area of energy-aware multicore processor architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.