Abstract

AbstractIn this paper, we study the power and limitations of computing effectively generic sequences using effectively random oracles. Previously, it was known that every 2-random sequence computes a 1-generic sequence (as shown by Kautz) and every 2-random sequence forms a minimal pair in the Turing degrees with every 2-generic sequence (as shown by Nies, Stephan, and Terwijn). We strengthen these results by showing that every Demuth random sequence computes a 1-generic sequence and that every Demuth random sequence forms a minimal pair with every pb-generic sequence (where pb-genericity is an effective notion of genericity that is strictly between 1-genericity and 2-genericity). Moreover, we prove that for every comeager${\cal G} \subseteq {2^\omega }$, there is some weakly 2-random sequenceXthat computes some$Y \in {\cal G}$, a result that allows us to provide a fairly complete classification as to how various notions of effective randomness interact in the Turing degrees with various notions of effective genericity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.