Abstract

The nature of halogen-bond interactions has been analysed from the perspective of the astatine element, which is potentially the strongest halogen-bond donor. Relativistic quantum calculations on complexes formed between halide anions and a series of Y3 C-X (Y=F to X, X=I, At) halogen-bond donors disclosed unexpected trends, e. g., At3 C-At revealing a weaker donating ability than I3 C-I despite a stronger polarizability. All the observed peculiarities have their origin in a specific component of C-Y bonds: the charge-shift bonding. Descriptors of the Quantum Chemical Topology show that the halogen-bond strength can be quantitatively anticipated from the magnitude of charge-shift bonding operating in Y3 C-X. The charge-shift mechanism weakens the ability of the halogen atom X to engage in halogen bonds. This outcome provides rationales for outlier halogen-bond complexes, which are at variance with the consensus that the halogen-bond strength scales with the polarizability of the halogen atom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.