Abstract
AbstractMiscible thermals are formed by instantaneously releasing a finite volume of buoyant fluid into stagnant ambient. Their subsequent motion is then driven by the buoyancy convection. The gross characteristics (e.g. overall size and velocity) of a thermal have been well studied and reported to be self-similar. However, there have been few studies concerning the internal structure. Here, turbulent miscible thermals (with initial density excess of 5 % and Reynolds number around 2100) have been investigated experimentally through a large number of realizations. The vorticity and density fields were quantified separately by particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques. Ensemble-averaged data of the transient development of the miscible thermals are presented. Major outcomes include: (i) validating Turner’s assumption of constant circulation within a buoyant vortex ring; (ii) measuring the vorticity and density distributions within the miscible thermal; (iii) quantifying the effect of baroclinicity on the generation and destruction of vorticity within the thermal; and (iv) identifying the significantly slower decay rate of the peak density as compared to the mean.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.