Abstract
We study internal stability in the context of diffusively-coupled control architectures, common in multi-agent systems (i.e. the celebrated consensus protocol), for linear time-invariant agents. We derive a condition under which the system cannot be stabilized by any controller from that class. In the finite-dimensional case the condition states that diffusive controllers cannot stabilize agents that share common unstable dynamics, directions included. This class always contains the group of homogeneous unstable agents, like integrators. We argue that the underlying reason is intrinsic cancellations of unstable agent dynamics by such controllers, even static ones, where directional properties play a key role. The intrinsic lack of internal stability explains the notorious behavior of some distributed control protocols when affected by measurement noise or exogenous disturbances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.