Abstract

This study gives insights into the interfacial instabilities of a ventilation cavity by injecting gas vertically into the horizontal liquid crossflow through both numerical and experimental investigations. We identified four distinct regimes of the ventilation cavity based on their topological characteristics: (I) discrete bubble, (II) continuous cavity, (III) bifurcated cavity, and (IV) bubble plume. The boundaries for these regimes are delineated within the parameter space of crossflow velocity and jet speed. A comprehensive analysis of the flow characteristics associated with each regime is presented, encompassing the phase mixing properties, the dominant frequency of pulsation, and the time-averaged profile of the cavity. This study conducted a detailed investigation of the periodic pulsation at the leading-edge interface of the cavity, also known as the ‘puffing phenomenon’. The results of local spectral analysis and dynamic mode decomposition indicate that the high-frequency instability in the near-field region exhibits the most significant growth rate. In contrast, the low-frequency mode with the largest amplitude spans a broader region from the orifice to the cavity branches. A conceptual model has been proposed to elucidate the mechanism behind the pulsation phenomenon observed along the cavity interface: the pulsation results from the alternate intrusion of the crossflow and the cavity recovery at the leading edge, being governed mainly by the periodic oscillating imbalance between the static pressure of gas near the orifice and the stagnation pressure of crossflow at the leading edge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call