Abstract

The electronic structure origins of interfacial losses in hematite photoanodes and the cause of the literature-reported order-of-magnitude photocurrent increase upon short high-temperature annealing are investigated. Synchrotron-based soft X-ray absorption spectroscopy is used to probe the unoccupied states at and near the interface between hematite (α-Fe2O3) and fluorine-doped tin oxide (FTO). Oxygen K-edge and iron L-edge absorption spectra indicate that the interfacial interaction reduces the degree of p–d hybridization and alters the crystal field in α-Fe2O3. The interface is found to be associated with a distribution of unoccupied oxygen p-hybridized states located below the lowest unoccupied iron 3d states in α-Fe2O3 (just below the conduction band minimum), which are eliminated with high-temperature processing. These data facilitate future efforts to engineer favorable interfacial compositions and associated electrochemical potential gradients within photoanodes, which are required to efficiently separate charge carriers in operating photoelectrochemical systems such as solar cells and photocatalytic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.