Abstract

Interfacial properties of polymeric materials are significantly influenced by their architectural structures and spatial features, while such a study of topologically interesting macromolecules is rarely reported. In this work, we reported, for the first time, the interfacial behavior of catenated poly(l-lactide) (C-PLA) at the air-water interface and compared it with its linear analogue (L-PLA). The isotherms of surface pressure-area per repeating unit showed significant interfacial behavioral differences between the two polymers with different topologies. Isobaric creep experiments and compression-expansion cycles also showed that C-PLA demonstrated higher stability at the air-water interface. Interestingly, when the films at different surface pressures were transferred via the Langmuir-Blodgett method, successive atomic force microscopy imaging displayed distinct nanomorphologies, in which the surface of C-PLA exhibited nanofibrous structures, while that of the L-PLA revealed a smoother topology with less fiber-like structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.