Abstract
The understanding of the molecular-level interactions between biomolecules and ionic liquids (ILs) in aqueous media is crucial for the optimization of a number of relevant biotechnological processes. In this work, the influence of a series of amino acids on the liquid-liquid equilibria between 1-butyl-3-methylimidazolium tricyanomethane and water was studied to evaluate the preferential interactions between these three compounds. The solubility effects observed are dependent on the polarity, size, and charge distribution of the amino acid side chains and are explained in terms of a refined version of the model proposed earlier (Freire et al. J. Phys. Chem. B 2009, 113, 202; Tome et al. J. Phys. Chem. B 2009, 113, 2815) for ion specific effects on aqueous solutions of imidazolium-based ILs. Although acting through different mechanisms, salting-in and salting-out phenomena possess a common basis which is the competition between water-amino acid side chain, IL-amino acid side chain, and water-IL interactions. The delicate balance between these interactions is dependent on the relative affinities of the biomolecules to water molecules or to IL cation and anion and determines the trend and magnitude of the solubility effect observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.