Abstract

When the primary plus secondary stress range exceeds 3 Sm, the current ASME Code rules on simplified elastic-plastic analysis impose two separate requirements to evaluate the potential for ratcheting. The range of primary plus secondary stress excluding thermal bending must be less than 3 Sm, and the thermal stress must satisfy the Bree criterion for thermal stress ratchet. It has been shown previously that this method can be unconservative, i.e. predict shakedown when elastic-plastic analysis shows ratcheting. This paper clarifies the interaction between thermal membrane and bending stress in the presence of a primary membrane stress. An analytical model is used to derive the closed-form ratchet boundary for combined uniform loading of this type. The impact of having stress gradients along the wall that are typical for discontinuities is studied numerically. Simple modifications of the current Code methods are suggested that would achieve a clearer and better-justified set of rules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.