Abstract
The interaction of a spiral wave with stars near the inner Lindblad resonance in a galactic disk has been investigated. The dispersion relation describing the behavior of the complex wave number of the spiral wave as a function of the distance to the resonance has been derived within the framework of a purely linear problem and in the leading orders of the epicyclic and WKB approximations. We also have improved the result of Mark (1971) concerning behavior of the amplitude of leading spiral wave near the resonance circle. We have studied the consequences following from the hypothesis that weak nonlinearity in a narrow resonance region changes the standard rule of bypassing the pole in the complex plane, known as the Landau–Lin bypass rule, to taking the corresponding principal value integral. By analogy with hydrodynamics, where such a problem arises when analyzing the resonant interaction of waves with shear flows, we expect that a small, but finite amplitude can lead to a modification of the bypass rule and, as a consequence, to the elimination of the effect of spiral wave absorption at the resonance and its reflection. We have shown that under some assumptions the presumed picture actually takes place, but the detailed situation looks quite unexpected: near the resonance the regions where stars cause wave attenuation alternate with the regions where the wave is amplified. At the same time, there is no wave absorption effect when integrated over the resonance region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.