Abstract

By following the tryptophan fluorescence of yeast seryl-tRNA synthetase on addition of tRNA Ser it was observed that the number of binding sites for tRNA decreases from two to one with increasing temperature, ATP or KCl concentration. Concomitantly a considerable decrease of the apparent binding constant was observed. The variation in the number of binding sites is explained by the presence of at least one temperature and ionic strength sensitive binding site and one temperature and ionic strength independent binding site. Relaxation kinetic experiments revealed two binding processes: a fast one depending on tRNA concentration and ionic strength and a slow one, which appeared to be independent of tRNA concentration and ionic strength. Enzyme kinetic studies showed that the activity of seryl-tRNA synthetase strongly depends on the KCl concentration and exhibits a maximum at 0.2 M KCl. Based on the data from relaxation and enzyme kinetic experiments a model is suggested for the recognition process involving a first unspecific step where all tRNAs, cognate and non-cognate, are bound to the synthetase (scanning step). The identification of the cognate tRNA is then performed at the recognition site by a conformational transition of the tRNA . synthetase complex (identification step).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call