Abstract
In this work, we investigate the dynamics of wind turbine tip-vortex breakdown in a conventionally neutral atmospheric boundary layer (ABL). To this end, high-resolution data are collected from large-eddy simulations of a wind turbine operating within a neutral ABL and studied by means of proper orthogonal decomposition (POD) and Fourier analysis. The high resolution of the generated data in both space and time allows us to gain insight into the tip-vortex breakdown mechanisms by (i) capturing the energy modes of the coherent structures, (ii) studying their contribution to the tip-vortex breakdown through their power spectra functions and mean kinetic energy (MKE) flux, and (iii) analysing the growth rate of each contributing perturbation frequency along tip vortices. Our analysis shows that under a fully turbulent scenario, the growth rate of perturbations along the tip vortices is largest for low wave numbers, i.e. long-wave perturbations. Additionally, the MKE flux reaches its highest value at two diameters downstream of the rotor plane, a behaviour that can be attributed to the coexistence of multiple interacting POD modes, with the streamwise vortex roller mode being the primary contributor to the total MKE flux budget, contributing approximately 24%. Finally, comparisons with a laminar, uniform flow scenario subject to a single-frequency perturbation highlight the differences between the two ambient flow conditions. In the non-turbulent, uniform flow scenario, the growth rate attains its maximum value at a wave number corresponding to the out-of-phase mutual-inductance mechanism, whereas the MKE flux exhibits local minima and maxima along the wake and at different downstream locations depending on the perturbation frequency. Our analyses suggest that the breakdown of the wind turbine tip vortices under a fully turbulent neutral ABL inflow is due to complex interactions across a range of excitation frequencies, in which the mutual-inductance instability may not be the dominant one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.