Abstract

The unsteady, two-dimensional Navier–Stokes equations and the exact free surface boundary conditions were solved to study the interaction of a solitary wave and a submerged dike. A piston-type wavemaker was set up in the computational domain to produce the incident solitary waves. The incident wave and the associated boundary layer flow in a wave tank with a flat bed were compared with the analytical solutions to verify the accuracy of this numerical scheme. Effects of the incident wave height and the size of the dike on the wave transformation, the flow fields, and the drag forces on the dike were discussed. Our numerical results showed that even though the induced local shear stress on the top surface of the dike is large at some particular locations, the resultant pressure drag is much larger than the friction drag. The primary vortex generated at the lee side of the dike and the secondary vortex at the right toe of the dike may scour the bottom and cause a severe problem for the dike.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.