Abstract
This paper presents a closed-form expression for the integral kernels associated with the derivatives of the Ornstein–Uhlenbeck semigroup [Formula: see text]. Our approach is to expand the Mehler kernel into Hermite polynomials and apply the powers [Formula: see text] of the Ornstein–Uhlenbeck operator to it, where we exploit the fact that the Hermite polynomials are eigenfunctions for [Formula: see text]. As an application we give an alternative proof of the kernel estimates by Ref. 10, making all relevant quantities explicit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Infinite Dimensional Analysis, Quantum Probability and Related Topics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.