Abstract

AbstractAlthough the plane boundary value problem for the Laplacian with given Dirichlet data on one part Γ2 and given Neumann data on the remaining part Γ2 of the boundary is the simplest case of mixed boundary value problems, we present several applications in classical mathematical physics. Using Green's formula the problem is converted into a system of Fredholm integral equations for the yet unknown values of the solution u on Γ2 and the also desired values of the normal derivatie on Γ1. One of these equations has principal part of the second kind, whereas that one of the other is of the first kind. Since any improvement of constructive methods requires higher regularity of u but, on the other hand, grad u possesses singularities at the collision points Γ1 ∩ Γ2 even for C∞ data, u is decomposed into special singular terms and a regular rest. This is incorporated into the integral equations and the modified system is solved in appropriate Sobolev spaces. The solution of the system requires to solve a Fredholm equation of the first kind on the arc Γ2 providing an improvement of regularity for the smooth part of u. Since the integral equations form a strongly elliptic system of pseudodifferential operators, the Galerkin procedure converges. Using regular finite element functions on Γ1 and Γ2 augmented by the special singular functions we obtain optimal order of asymptotic convergence in the norm corresponding to the energy norm of u and also superconvergence as well as high orders in smoother norms if the given data are smooth (and not the solution).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call