Abstract
We examine the integral cohomology rings of certain families of $2n$-dimensional orbifolds $X$ that are equipped with a well-behaved action of the $n$-dimensional real torus. These orbifolds arise from two distinct but closely related combinatorial sources, namely from characteristic pairs $(Q,\lambda)$, where $Q$ is a simple convex $n$-polytope and $\lambda$ a labelling of its facets, and from $n$-dimensional fans $\Sigma$. In the literature, they are referred as toric orbifolds and singular toric varieties respectively. Our first main result provides combinatorial conditions on $(Q,\lambda)$ or on $\Sigma$ which ensure that the integral cohomology groups $H^{\ast}(X)$ of the associated orbifolds are concentrated in even degrees. Our second main result assumes these condition to be true, and expresses the graded ring $H^*(X)$ as a quotient of an algebra of polynomials that satisfy an integrality condition arising from the underlying combinatorial data. Also, we compute several examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.