Abstract

We show the three-loop integrability of large N plane-wave matrix theory in a subsector of states comprised of two complex light scalar fields. This is done by diagonalizing the theory's Hamiltonian in perturbation theory and taking the large N limit. At one-loop level the result is known to be equal to the Heisenberg spin-1/2 chain, which is a well-known integrable system. Here, integrability implies the existence of hidden conserved charges and results in a degeneracy of parity pairs in the spectrum. In order to confirm integrability at higher loops, we show that this degeneracy is not lifted and that (corrected) conserved charges exist. Plane-wave matrix theory is intricately connected to N=4 super-Yang–Mills, as it arises as a consistent reduction of the gauge theory on a three-sphere. We find that after appropriately renormalizing the mass parameter of the plane-wave matrix theory the effective Hamiltonian is identical to the dilatation operator of N=4 super-Yang–Mills theory in the considered subsector. Our results therefore represent a strong support for the conjectured three-loop integrability of planar N=4 SYM and are in disagreement with a recent dual string theory finding. Finally, we study the stability of the large N integrability against nonsupersymmetric deformations of the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.