Abstract

Consider a holomorphic torus action on vector bundles over a complex manifold which lifts to a holomorphic vector bundle. When the connected components of the fixed-point set are partially ordered, we construct, using sheaf-theoretical techniques, two spectral sequences that converges to the twisted Dolbeault cohomology groups and those with compact support, respectively. These spectral sequences are the holomorphic counterparts of the instanton complex in standard Morse theory. The results proved imply holomorphic Morse inequalities and fixed-point formulas on a possibly non-compact manifold. Finally, a number of examples and applications are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.