Abstract

In the analysis of interior acoustic problems, the time domain boundary element method (TBEM) suffers the monotonically increasing instability when using the direct Kirchhoff integral. This instability is related to the non-oscillatory static acoustic mode describing the constant spatial response in an enclosure. In this work, nonphysical natures of non-oscillatory static mode influencing the instability of TBEM calculation are investigated, and a method for stabilization is studied. In TBEM calculation, the static mode is represented by two non-oscillatory eigenmodes with different eigenvalues. The monotonically increasing instability is caused by the unstable poles of non-oscillatory eigenmodes as well as very small, very low frequency noise of an input signal. Interior problems with impedance boundary condition also exhibit the monotonically increasing instability stemming from its pseudo non-oscillatory static mode due to the lack of dissipation at very low frequencies. Calculation of transient sound fields within rigid and lined boxes provides numerical evidences. It is noted that the stabilization effort by modifying the coefficient matrix based on the spectral decomposition can be used only for correcting the unstable pole. The filtering method based on the eigen-analysis must be additionally used to avoid the remaining instability caused by very low frequency noise of input signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.