Abstract

We consider a non-relativistic electron interacting with a classical magnetic field pointing along the $x_3$-axis and with a quantized electromagnetic field. The system is translation invariant in the $x_3$-direction and we consider the reduced Hamiltonian $H(P_3)$ associated with the total momentum $P_3$ along the $x_3$-axis. For a fixed momentum $P_3$ sufficiently small, we prove that $H(P_3)$ has a ground state in the Fock representation if and only if $E'(P_3)=0$, where $P_3 \mapsto E'(P_3)$ is the derivative of the map $P_3 \mapsto E(P_3) = \inf \sigma (H(P_3))$. If $E'(P_3) \neq 0$, we obtain the existence of a ground state in a non-Fock representation. This result holds for sufficiently small values of the coupling constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.