Abstract
In this paper the information transfer rate of a single-photon avalanche diode (SPAD) array is investigated. The SPAD array is modelled as a discrete-time Gaussian channel with signal-dependent mean and variance. The SPAD dead time is a parameter which affects the extent of this signal dependency. The SPAD array channel capacity and the properties of the capacity-achieving input distributions are studied. Using a numerical algorithm, the capacity and the optimal input distributions subject to peak and average power constraints are obtained for various array sizes, dead times and background count levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.