Abstract
The frictional behaviors between metal forming tool and three different metallic materials were evaluated using the microforming T-shape test. A mathematical function is proposed to describe the calibration curves for different friction coefficients. Round bars of copper, aluminum and silver of diameter 1mm and length 5mm were used as the workpieces to study the material influence on friction factor, m, during unlubricated microforming process through comparison between simulation and experimental results. Furthermore, various lubricants were used with the aluminum and copper to examine their performance in microforming. The results have shown that the workpiece materials not only determine the friction factor, m, during unlubricated microforming, but also influence the performance of lubricants. Lubricant can be completely ineffective and may not produce discernible friction reduction in microforming, unlike in conventional metal forming. By considering the influence of contact pressure on lubricant effectiveness, a novel pressure dependent frictional model and a lubricant evaluation method are proposed.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.