Abstract

ObjectiveParameters other than maximum diameter that predict rupture of abdominal aortic aneurysms (AAAs) may be helpful for risk-benefit analysis in individual patients. The aim of this study was to characterize the biomechanical-structural characteristics associated with AAA walls to better identify the related mechanistic variables required for an accurate prediction of rupture risk. MethodsAnterior AAA wall (n = 40) and intraluminal thrombus (ILT; n = 114) samples were acquired from 18 patients undergoing open surgical repair. Biomechanical characterization was performed using controlled circumferential stretching tests combined with a speckle-strain tracking technique to quantify the spatial heterogeneity in deformation and localized strains in the AAA walls containing calcification. After mechanical testing, the accompanying microstructural characteristics of the AAA wall and ILT types were examined using electron microscopy. ResultsNo significant correlation was found between the AAA diameter and the wall mechanical properties in terms of Cauchy stress (rs = −0.139; P = .596) or stiffness (rs = −0.451; P = .069). Quantification of significant localized peak strains, which were concentrated in the tissue regions surrounding calcification, reveals that peak strains increased by a mean of 174% as a result of calcification and corresponding peak stresses by 18.2%. Four ILT types characteristic of diverse stages in the evolving tissue microstructure were directly associated with distinct mechanical stiffness properties of the ILT and underlying AAA wall. ILT types were independent of geometric factors, including ILT volume and AAA diameter measures (ILT stiffness and AAA diameter [rs = −0.511; P = .074]; ILT stiffness and ILT volume [rs = −0.245; P = .467]). ConclusionsAAA wall stiffness properties are controlled by the load-bearing capacity of the noncalcified tissue portion, and low stiffness properties represent a highly degraded vulnerable wall. The presence of calcification that is contiguous with the inner wall causes severe tissue overstretching in surrounding tissue areas. The results highlight the use of additional biomechanical measures, detailing the biomechanical-structural characteristics of AAA tissue, that may be a helpful adjunct to improve the accuracy of rupture prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.