Abstract

We solve the Dyson-Schwinger equations of the ghost and gluon propagators of Landau gauge Yang-Mills theory together with that of the ghost-gluon vertex. The latter plays a central role in many truncation schemes for functional equations. By including it dynamically we can determine its influence on the propagators. We also suggest a new model for the three-gluon vertex motivated by lattice data which plays a crucial role to obtain stable solutions when the ghost-gluon vertex is included. We find that both vertices have a sizable quantitative impact on the mid-momentum regime and contribute to the reduction of the gap between lattice and Dyson-Schwinger equation results. Furthermore, we establish that the three-gluon vertex dressing turns negative at low momenta as suggested by lattice results in three dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.