Abstract
Abstract The paper presents selected aspects of calculations and modelling of variograms from measurements of soil surface magnetic susceptibility for rapid screening of surface soil contamination with Technogenic Magnetic Particles (TMP). In particular, the methodology of variogram analysis in the case of multiple magnetometric measurements in one measurement location with the use of the MS2D Bartington sensor was discussed. A new approach to analysing such measurements was proposed that allows determining and using the nugget effect from standard, already existing measurements. This is of key importance for the quality of spatial analyses, and thus the screening results obtained by means of field magnetometry. In the paper, it was shown, step by step, that averaging the measurements performed at one measurement point during the calculation of the empirical variograms does not result in the loss of information on spatial variability in the microscale. As it was calculated non-averaged measurements were characterised by the nugget-to-sill ratio of about 96 % which was much higher than in the case of averaged measurements (close to 0 %). A range of correlation was similar in both cases and was equal to about 300 m - 400 m. The local variogram revealed a range of correlation of about 80 cm. As a result, the screening results are more reliable than is the case with the traditional procedure. An additional advantage of the work was the performance of all calculations in free R software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.