Abstract

Abstract The consequences of introducing the fourth order orientation tensor as an independent variable in addition to the second order one are investigated. In the first part consequences of the Second Law of Thermodynamics are exploited. The cases with the second order alignment tensor in the state space on one hand and with the second and fourth order alignment tensors on the other hand are analogous. In the latter case differential equations for the second and fourth order tensors result from linear force-flux relations with a coupling arising due to coupling terms in the free energy. In the second part the differential equations for the second order orientation tensor or the second and fourth order orientation tensors, respectively are given explicitly in the special case of a rotation symmetric orientation distribution. The Folgar-Tucker equation with a quadratic closure relation leads to a Riccati equation for the second order parameter. In comparison the Folgar-Tucker equation and the differential equation for the fourth order parameter are considered. The fourth order parameter is eliminated later. The resulting equation for the second order parameter is a Duffing equation with a behavior of solutions completely different from the solutions of the Riccati equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call