Abstract

Based on the equation for potential vorticity in the quasi-geostrophic approximation, an analysis of stable and unstable perturbations of ocean currents of a finite transverse scale with a vertical linear velocity profile (Couette-type flows) is presented. The model takes into account the influence of vertical diffusion of buoyancy, friction, and the beta effect (the change in the Coriolis parameter with latitude). The analysis is based on the small perturbation method. The problem depends on several physical parameters and reduces to solving a spectral non-self-adjoint problem for a fourth-order equation with a small parameter at the highest derivative. Asymptotic expansions of eigenfunctions and eigenvalues are constructed for small values of the wavenumber $$k$$ . Using the continuation in the parameter $$k$$ , trajectories of the eigenvalues are calculated, which made it possible to compare the influence of the beta effect on unstable perturbations of the first and higher order modes. It is shown that the flow instability depends in a complex way on the physical parameters of the flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.