Abstract

Single crystal superalloys have excellent high temperature strength and oxidation resistance and are therefore used as blades in aircraft engines and land based gas turbines. The microstructure of these alloys consists of two phases: (i) a high volume fraction of coherently precipitated {gamma}{prime}-cubes (L1{sub 2}) which strengthen the material separated by (ii) thin channels of face centered cubic (f.c.c.) {gamma}-matrix, as shown. However, microstructural instability (i.e. {gamma}{prime}-coarsening) is observed in these alloys during high temperature creep deformation (T > 900 C). In creep, coarsening of particles is generally considered as a softening process which increases the creep rate of an alloy. However, this process does not always dominate the overall materials response to creep loading. Thus, Mughrabi et al have clearly shown that {gamma}{prime}-coarsening can occur while the overall creep rate decreases. A number of studies on the high temperature creep deformation behavior of various single crystal superalloys have been reported in recent years. To explain rafting the authors here consider the case of a {gamma}/{gamma}{prime}-microstructure with negative misfit, i.e. where the lattice constant of the ordered {gamma}{prime}-phase is smaller than the lattice constant of the {gamma}-phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.