Abstract

Relating wear characteristics of a metallic material to its mechanical properties (yield strength, strain hardening coefficient) and its microstructural features (size and volume fraction of inclusions) is a long-standing problem. The diversity of mechanisms which are involved during wear processes makes it practically impossible to have a general theory which would encompass all thinkable situations corresponding to various loads and various regimes of sliding. Different regimes and the conditions for their occurrence have been systematized in wear mechanism maps. In this communication the authors are going to restrict their consideration to plasticity dominated wear which is expected to occur in the low velocity range where surface heating is negligible. In this regime, the prevalent wear mechanism is the removal of slivers of metal by plastic failure due to shearing of contact asperities. The classic works by Rabinowicz have demonstrated clearly that solid friction is a rate dependent problem and that the velocity dependence of dynamic solid friction is nothing else than a consequence of the increase of static solid friction with time during which normal load was applied prior to the commencement of sliding. Creep under normal compression stress leads to flattening of the junctions causing their strength to increasemore » with time. Like solid friction, wear appears to be a rate dependent phenomenon, and the strain rate sensitivity of the flow stress can be expected to be relevant for wear resistance. The strain rate sensitivity is known to play an important role in other damage related properties, such as ductility and fracture toughness. The authors felt that it would be of interest to evaluate the effect of strain rate sensitivity on the wear rate as part of an attempt to relate the wear properties to a bulk constitutive equation, and as a guideline for assessing the influence of alloying elements known to affect the strain rate sensitivity.« less

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.