Abstract

The visual world provides a myriad of cues that can be used to direct information processing. How does the brain integrate predictive information from disparate sources to modify visual priorities, and are combination strategies consistent across individuals? Previous evidence shows that cues predictive of the value of a visually guided task (incentive value) and cues that signal where targets may occur (spatial certainty) act independently to bias attention. Anticipatory accounts propose that both cues are encoded into an attentional priority map, whereas the counterfactual account argues that incentive value cues instead induce a reactive encoding of losses based on the direction of attention. We adjudicate between these alternatives and further determine whether there are individual differences in how attentional cues are encoded. 149 participants viewed two coloured placeholders that specified the potential value of correctly identifying an imminent target. Prior to the target’s presentation, an endogenous spatial cue indicated the target’s likely location. The anticipatory and counterfactual accounts were used to motivate parametric regressors that were compared in their explanatory power of the data, at the group level and on data stratified by a clustering algorithm. Clustering revealed 2 subtypes; whereas all individuals use spatial certainty cues a subset does not use incentive value cues. When incentive value cues are used their influence reflects a counterfactual loss function. The data support the counterfactual account and show that theories of motivated attention must account for the non-uniform influence of incentive value on visual priorities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call