Abstract

It is well known that mechanical surface treatments, such as deep rolling, shot peening and laser shock peening, can significantly improve the fatigue behavior of highly-stressed metallic components. Deep rolling (DR) is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In the present investigation, the effect of DR on the low-cycle fatigue (LCF) and high-cycle fatigue (HCF) behavior of a Ti–6Al–4V alloy is examined, with particular emphasis on the thermal and mechanical stability of the residual stress states and the near-surface microstructures. Preliminary results on laser shock peened Ti–6Al–4V are also presented for comparison. Particular emphasis is devoted to the question of whether such surface treatments are effective for improving the fatigue properties at elevated temperatures up to ∼450 °C, i.e. at a homologous temperature of ∼0.4 T/T m (where T m is the melting temperature). Based on cyclic deformation and stress/life ( S/ N) fatigue behavior, together with the X-ray diffraction and in situ transmission electron microscopy (TEM) observations of the microstructure, it was found that deep rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in Ti–6Al–4V at such higher temperatures, despite the almost complete relaxation of the near-surface residual stresses. In the absence of such stresses, it is shown that the near-surface microstructures, which in Ti–6Al–4V consist of a layer of work hardened nanoscale grains, play a critical role in the enhancement of fatigue life by mechanical surface treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call