Abstract

Distributed compliant mechanisms are components that use elastic strain to obtain a desired kinematic behavior. Compliant mechanisms obtained via topology optimization using the standard approach of minimizing/maximizing the output displacement with a spring at the output port, representing the stiffness of the external medium, usually contain one-node connected hinges. Those hinges are undesired since an ideal compliant mechanism should be a continuous part. This work compares the use of two strategies for stress constrained problems: local and global stress constraints, and analyses their influence in eliminating the one-node connected hinges. Also, the influence of spatial filtering in eliminating the hinges is studied. An Augmented Lagrangian formulation is used to couple the objective function and constraints, and the resulting optimization problem is solved by using an algorithm based on the classical optimality criteria approach. Two compliant mechanisms problems are studied by varying the stress limit and filtering radius. It is observed that a proper combination of filtering radius and stress limit can eliminate one-node connected hinges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call